

AUSTRALIAN CURRICULUM WESTERN AUSTRALIA

AUTHORS: Jennifer Nolan / Melanie Koetsveld / Joe Marsiglio / Lyn Elms / Dina Antoniou SERIES CONSULTANT: JAN HONNENS

OXFORD

NUMBER AND ALGEBRA

CHAPTER 1 FINANCIAL MATHEMATICS	2
1A Review of percentages	4
1B Financial applications of percentages	
1C Understanding simple interest	
1D Working with simple interest	
1E Understanding compound interest	
1F The compound interest formula	
1G Working with compound interest	
Chapter review	
Connect: Repayment options	

CHAPTER 2 ALGEBRA	52
2A Working with algebraic terms	54
2B Review of index laws	
2C Expanding algebraic expressions	66
2D Factorising algebraic expressions	
2E Factorising quadratic trinomials of the form $x^2 + bx + c$	
2F Working with algebraic fractions	
2G Factorising quadratic trinomials of the form $ax^2 + bx + c$ [10A]	9C
Chapter review	
Connect: Who let the geese out?	

CHAPTER 3 REAL NUMBERS (10A)	. 102
3A Understanding rational and irrational numbers (10A)	104
3B Multiplying and dividing surd <mark>s (10</mark> A)	110
3C Simplifying surds (10A)	116
3D Adding and subtracting surds (10A),	122
3E Writing surd fractions with a rational denominator (10A)	128
3F Fractional indices (10A)	134
3G Understanding <mark>lo</mark> garithms (10A)	140
3H Working with logarithms (10A)	146
Chapter review	152
Connect: The mathematics of earthquakes	156

CHAPTER 4 LINEAR RELATIONSHIPS	158
4A Solving linear equations	160
4B Solving linear inequalities	166
4C Sketching linear graphs	172
4D Finding the rule for a linear relationship	178
4E Parallel and perpendicular lines	
4F Solving linear simultaneous equations graphically	190
4G Solving linear simultaneous equations algebraically	
Chapter review	202
Connect: Comparing taxi charges	206

•••	

.....

CHAPTER 5 NON-LINEAR RELATIONSHIPS	208
5A Solving quadratic equations	210
5B Solving quadratic equations using the quadratic formula	216
5C Sketching parabolas using intercepts	222
5D Sketching parabolas using transformations	228
5E Graphs of circles	234
5F Graphs of exponential relationships	240
5G Solving exponential equations (10A)	246
5H Graphs of hyperbolas (10A)	252
5I Sketching non-linear relationships using transformations (10A)	258
Chapter review	262
Connect: Bridges, domes and arches	266
CHAPTER 6 POLYNOMIALS (10A)	268
6A Understanding polynomials (10A)	270
6B Division of polynomials (10A)	274
6C Remainder and factor theorems (10A)	278
6D Solving polynomial equations (10A)	282
6E Graphs of polynomials (10A)	286
6F Polynomials and transformations (10A)	290
Chapter review	294
Connect: Modelling a roller coaster ride	298

MEASUREMENT AND GEOMETRY

CHAPTER Z GEOMETRY	
7A Geometry review	
7B Congruence	
7C Similarity	314
7D Understanding proofs	320
7 <mark>E</mark> Proofs and triangles	
7F Proofs and quadrilaterals	
7G Circle geometry: circles and angles (10A)	
7H Circle geometry: chords (10A)	
71 Circle geometry: tangents and secants (10A)	350
Chapter review	356
Connect: Euclid's elements	
CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY	
CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY	362 364
CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry	362
CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry	362
CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry 8D Applications of trigonometry	362
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry 8D Applications of trigonometry 8E Three-dimensional problems (10A) 	
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry 8D Applications of trigonometry 8E Three-dimensional problems (10A) 8F Sine and area rules (10A) 	362 364 370 376 382 388 394
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry 8D Applications of trigonometry 8E Three-dimensional problems (10A) 8F Sine and area rules (10A) 8G Cosine rule (10A) 	362 364 370 376 382 388 394 400
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry. 8C Finding angles using trigonometry. 8D Applications of trigonometry. 8E Three-dimensional problems (10A) 8F Sine and area rules (10A) 8G Cosine rule (10A) 8H The unit circle and trigonometric graphs (10A) 	362 364 370 376 382 388 394 400 406
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry 8C Finding angles using trigonometry 8D Applications of trigonometry 8E Three-dimensional problems (10A) 8F Sine and area rules (10A) 8G Cosine rule (10A) 8H The unit circle and trigonometric graphs (10A) 8I Solving trigonometric equations (10A) 	362 364 370 376 382 388 394 400 406 412
 CHAPTER 8 PYTHAGORAS' THEOREM AND TRIGONOMETRY 8A Finding lengths using Pythagoras' Theorem 8B Finding lengths using trigonometry. 8C Finding angles using trigonometry. 8D Applications of trigonometry. 8E Three-dimensional problems (10A) 8F Sine and area rules (10A) 8G Cosine rule (10A) 8H The unit circle and trigonometric graphs (10A) 8I Solving trigonometric equations (10A) 	362 364 370 376 382 388 394 400 406 412 418

CHAPTER 9 MEASUREMENT	424
9A Length and perimeter	
9B Area	432
9C Surface area of prisms and cylinders	438
9D Volume of prisms and cylinders	
9E Surface area of pyramids and cones (10A)	450
9F Volume of pyramids and cones (10A)	456
9G Surface area and volume of spheres (10A)	
9H Surface area and volume of composite solids (10A)	
Chapter review	474
Connect: Setting up a small farm	478

STATISTICS AND PROBABILITY

CHAPTER 10 STATISTICS	
10A Measures of centre	482
10B Measures of spread	
10C Standard deviation (10A)	
10D Box plots	
10E Scatterplots and bivariate data	
10F Interpreting bivariate data (10A)	
10G Time series	
10H Analysing reported statistics	
Chapter review	530
Connect: Investigating and analysing data	534
CHAPTER 11 PROBABILITY	536
11A Review of theoretical probability	538
11B Tree diagrams	544
11C Experiments with and without replacement	550

•			
11D Independent and dependent e	events		
11E Conditional probability with tw	ro- <mark>way</mark> 1	tables and tree	diagrams56
11F Conditional probability and Ver	nn diag	rams	
11G Sampling and reporting (10A).			
Chapter review			
Connect: How secure is your passy	vord?		

Answers	586
Glossary	722
Index	730
Acknowledgements	737

OXFORD MYMATHS FOR WESTERN AUSTRALIA

Oxford MyMaths for Western Australia has been specifically developed to support students wherever and whenever learning happens: in class, at home, with teacher direction or in independent study.

STUDENT BOOK + <u>O</u>BOOK/<u>A</u>SSESS

- Finely levelled exercises to ensure smooth progress
- Integrated worked examples

 right where your students need them
- Learning organised around the 'big ideas' of mathematics
- Discovery, practice, thinking and problem-solving activities promote deep understanding
- A wealth of revision material to consolidate and prove learning
- Rich tasks to apply understanding
- Highly accessible and easy to navigate
- Comprehensive digital tutorials and guided examples to support independent progress

6 POLYNOMIALS

6A	Understanding polynomials	10A
6B	Division of polynomials	10A
6C	Remainder and factor theorems	10A
6D	Solving polynomial equations	10A

- 6E Graphs of polynomial 10A relationships 10A
- 6F Polynomials and transformations

ESSENTIAL QUESTION

What are polynomials and how are they useful when modelling a relationship?

Are you ready?

269

6A Understanding polynomials

Start thinking!

A **polynomial** is an expression with terms containing one variable only, and with that variable raised to a power that is a positive integer or zero.

- 1 Consider the quadratic expression $3x^2 5x + 7$.
 - **a** What variable is used in the expression?
 - **b** What is the power of x in:
 - i the first term? ii the second term? iii the third term? (Hint: what does x^0 equal?)
 - **c** Is the expression a polynomial? Explain.
 - **d** What is the highest power of x used? This is the degree of the polynomial.
 - e Which term contains the highest power of x? This is the leading term of the polynomial.
 - f What is the coefficient of the leading term? This is the leading coefficient of the polynomial.
 - g Which term is the constant term?
- 2 Decide if each expression is a polynomial. Give a reason for your answer.
 - **a** $x^3 + 7x^2 + 3x + 2$ **b** $8x^2 - 2x^{\frac{1}{4}}$ **c** $4x + 9x^4 - x^2$ **d** $\frac{6}{x} + 5x^7$ **e** $2x^5 - x^4 + 1 - \sqrt{x}$ **f** $3x^2 + 2xy - y^3$

KEY IDEAS

- ► A polynomial is an expression that contains only one variable, such as *x*. Each term contains the variable raised to a non-negative integer value (0, 1, 2, 3, ...).
- A polynomial can be written as $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x^1 + a_0 x^0$ where *n* is the highest power and $a_n, a_{n-1}, ..., a_2, a_1, a_0$ are coefficients. P(x) is read as 'P of x' meaning the polynomial P using the variable x.
- The degree of a polynomial (n) is the highest power of the variable. Polynomials are given names according to their degree. Some common polynomials are listed in the table at right.
- The leading term $(a_n x^n)$ contains the highest power of the variable and is usually written first.
- ► To add or subtract polynomials, add or subtract any like terms.
- ► To expand the product of two polynomials, multiply each term in the first polynomial by each term in the second. If there are more than two polynomial factors to multiply together, expand two factors and then multiply the result by the remaining factors, one at a time.

Degree	Name	Example
0	constant	5 (or 5x ⁰)
1	linear	$2x + 9$ (or $2x^1 + 9$)
2	quadratic	$-x^2 + 3x - 1$
3	cubic	$4x^3 - x^2 + 2x + 7$
4	quartic	$\frac{1}{2}x^4 + x^2 - 2$

EXERCISE 6A Understanding polynomials

1 Decide if each expression is a polynomial. For each polynomial, give its name as constant, linear, quadratic, cubic or quartic.

a	$4x^3 + 2x^2 + 5x + 1$	b	$1 - x^3y^2 + 7x$	c	6 - 9x
d	$3x + x^2 - 4$	e	$2x^3 + 3\sqrt{x} - 6$	f	8
g	$5x^3 - 2x^{\frac{1}{5}} + 7$	h	$x^4 + x + 1$	i	$\frac{3}{7}x^{3}$

EXAMPLE 6A-1

Identifying features of a polynomial

For the polynomial $2x^3 - x^2 + 7x + 4$, identify:

- a the number of terms **b** the degree of the polynomial
- c the constant term d the leading term
- f the coefficient of the x^2 term e the leading coefficient

THINK

UNDERSTANDING AND FLUENCY

- a Terms are separated by + and signs.
- **b** Look for the highest power of x.
- c Look for a term without a variable (power of variable is 0).
- d Look for the term that has the highest power of x.
- e Write the coefficient of the leading term.
- f Write the coefficient of the term containing x^2 . The sign shown between it and the term before belongs to the x^2 term. $(-x^2 \text{ means } -1x^2)$

WRITE

- a There are four terms.
- **b** Degree is 3.
- c Constant term is 4.
- **d** Leading term is $2x^3$.
- e Leading coefficient is 2.
- f Coefficient of x^2 is -1.

2 For each polynomial below, identify: the number of terms iii the constant term v the leading coefficient a $2x^3 + 3x^2 + 4x + 5$ $-5x^4 - 2x^3 + 5x^2 + 1$ e $9-3x-6x^3+2x^2-7x^6$ 3 Simplify each polynomial by collecting like terms. **a** $4x^3 + 2x^2 - 4x - 1 + x^3 - 5x^2 + 3$ **b** $x^5 - 3x^2 + x^3 - 2x^4 - x^3 + 7x^2$ **c** $x^4 + 2 + 4x^2 + x^4 - 2x^2 - 5 + 6x^3$ **d** $(2x^2 - 5x + 1) + (3x^2 - 6x + 8)$

- ii the degree of the polynomial
- iv the leading term

vi the coefficient of the x^2 term

b
$$4x^3 + x^4 + 7x^3 - 2x^2 + 9x - 3$$

d $x^7 + x^6 - x^5 + x^4 + x^3 - x^2 + x$
c 2 11 10 + 5 8

- $3 11x^{10} + 5x^8$
- e $(5x^3 2x + 1) (2x^3 7x + 4)$ f $(3x^2 + x + x^3) (4x^4 3x^2 + 5x^3)$

EXAMPLE 6A-2	Evaluating a polynom	ial			
If $P(x) = 2x^3 - x^2 + 7x + 7x^3 + $	4, evaluate: a $P(3)$	b P(0) c I	P (-1)		
THINKa Substitute x = 3 into the evaluate.	e expression and	WRITE a $P(3) = 2(3)^3 - (3)^2 + 7(3) + 4$ = 54 - 9 + 21 + 4 = 70			
b Substitute $x = 0$ into the evaluate.	e expression and	b $P(0) = 2(0)^3 - (0)^2 + 7(0) + 4$ = 0 - 0 + 0 + 4 = 4			
c Substitute $x = -1$ into evaluate.	the expression and	c $P(-1) = 2(-1)^3 - (-1)^3 -$	1) ² + 7(-1) + 4 + 4		
4 If $P(x) = x$ a $P(2)$	$x^3 - 2x^2 + 5x - 8$, evaluate b $P(0)$	с <i>P</i> (3)	d P(-3)		
5 If $P(x) = 3$ a $P(3)$	$Bx^4 - 4x^3 + x^2 - 6x + 1$, ev b $P(1)$	c $P(-1)$	d P(-2)		
6 If $P(x) = 2$ a $P(x) +$ e $-2Q(x)$ i $2P(-1)$	$\begin{array}{cccc} 2x^3 - x^2 + 3x - 6 \text{ and } Q(x) \\ Q(x) & \mathbf{b} & P(x) - Q(x) \\ \mathbf{f} & 2P(x) + Q(x) \\ \mathbf{j} & -3Q(2) \end{array}$	$ \begin{array}{c} = 3x^2 - 7x + 2, \text{ find:} \\ \mathbf{c} Q(x) - P(x) \\ \mathbf{g} P(x) - 4Q(x) \\ \mathbf{k} P(3) + Q(3) \end{array} $	d $3P(x)$ h $3P(x) - 2Q(x)$ l $5P(0) - 4Q(0)$		
EXAMPLE 6A-3	Expanding the product	t of two polynomials			

Expand and simplify each product.

a $2x^3(x^2 - 3x + 4)$ **b** $(x^2 - 2)(x^3 - x + 5)$ **c** $(2x^4 - x^2 + 3)(x^3 + 4x - 1)$

THINK

- a Multiply the term outside the brackets with each term inside the pair of brackets.
- b Multiply each term in the first pair of brackets with each term in the second pair of brackets. Simplify like terms.
- c Multiply each term in the first pair of brackets with each term in the second pair of brackets. Simplify like terms.

WRITE

- a $2x^3(x^2 3x + 4)$ = $2x^5 - 6x^4 + 8x^3$
- **b** $(x^2 2)(x^3 x + 5)$ = $x^2(x^3 - x + 5) - 2(x^3 - x + 5)$ = $x^5 - x^3 + 5x^2 - 2x^3 + 2x - 10$ = $x^5 - 3x^3 + 5x^2 + 2x - 10$
- c $(2x^4 x^2 + 3)(x^3 + 4x 1)$ = $2x^4(x^3 + 4x - 1) - x^2(x^3 + 4x - 1) + 3(x^3 + 4x - 1)$ = $2x^7 + 8x^5 - 2x^4 - x^5 - 4x^3 + x^2 + 3x^3 + 12x - 3$ = $2x^7 + 7x^5 - 2x^4 - x^3 + x^2 + 12x - 3$

a
$$x^{3}(x^{2} + 2x + 7)$$

b $4x^{2}(x^{2} - 5x + 2)$
c $-6x^{3}(x^{4} - 4x^{2} + 1)$
d $(x + 3)(x^{2} - 2x + 4)$
e $(x^{2} - 1)(x^{2} + 3x - 7)$
f $(x^{2} - 5)(x^{3} - x + 3)$
g $(x^{4} - 3x + 2)(x^{3} + 4x^{2} - 1)$
h $(2x^{5} - 3x^{2} + 1)(x^{3} - 5x + 2)$

panding the product of three polynomials

Expand and simplify (x + 2)(x - 3)(x + 4).

THINK

- 1 Multiply two of the factors and simplify. It is easier to choose the last two.
- 2 Multiply the linear factor by the quadratic factor.
- 3 Simplify like terms.

WRITE

$$(x + 2)(x - 3)(x + 4)$$

$$= (x + 2)(x^{2} + 4x - 3x - 12)$$

$$= (x + 2)(x^{2} + x - 12)$$

$$= x(x^{2} + x - 12) + 2(x^{2} + x - 12)$$

$$= x^{3} + x^{2} - 12x + 2x^{2} + 2x - 24$$

$$= x^{3} + 3x^{2} - 10x - 24$$

- 8 Expand and simplify each product.
 - **a** 3x(x+2)(x+3) **b** $-7x^2(x+5)(x-2)$ **c** (x+3)(x+1)(x+6) **d** (x-3)(x-4)(x+1) **e** (3x-2)(x-5)(x-2)**f** (4x+1)(2x+7)(x-4)

9 Expand and simplify each expression.

a	$(x^3 + 4)^2$	b	$(x^2 + 3x)^2$	C	$2x(x^2-2)^2$	d	$(x^3 - 5x^2)^2$
e	$(x + 2)^3$	f	$(2x-3)^3$	g	$(x + 3)^4$	h	$(1 - x)^4$

10 What is the maximum number of terms in a polynomial of degree 5?

11 What is the minimum number of terms in a polynomial of degree 3?

- **12** If P(x) is a polynomial of degree *n*, what is:
 - a the maximum number of terms in P(x)?
 - b the minimum number of terms in P(x)?
 - c the degree of 2P(x)? d the degree of $[P(x)]^2$?
- **13** Find the value of k in $P(x) = x^3 2x^2 + 3x + k$, if P(2) = 2.
- 14 Find the value of k in $P(x) = 3x^4 + 2x^3 kx 5$, if P(-1) = 7.
- **15** Find the value of *a* and *b* in $P(x) = x^3 + ax^2 + bx + 1$, if P(3) = 31 and P(-2) = -19.

16 If
$$P(x) = x^3 - 3x^2 + 2x + 1$$
, write simplified expressions for:

 a $P(a)$
 b $P(-3a)$
 c $P(a^2)$
 d $P(-a^2)$
 e $P(a+2)$
 f $P(2a-1)$

 17 Show that $(2x - 1)^4 = 16x^4 - 32x^3 + 24x^2 - 8x + 1$.
 Reflect

 18 Simplify each expression.
 a $(x^2 - 2)^3$
 b $(x^3 + x - 1)^2$
 c $(2x^3 + 1)^4$

CHALLENGE

6B Division of polynomials

Start thinking!

So far you have added, subtracted and multiplied polynomials. They can also be divided, which is useful in factorising polynomials.

Before looking at long division of	polynomials, first consider long division of numbers.	26
		40

1	The working for using long division to find the result to $237 \div 9$ is shown a	t right.	9)237

- **a** Explain how 2 is obtained in the top line.
- **b** Explain why 18 is written below 23.
- **c** What is the result of 23 18? Identify where this is written in the working.
- **d** How is the new number to divide into (57) formed?
- e How many times does 9 go into 57? Where is this written?
- **f** Where does 54 come from?
- **g** How is 3 obtained?
- 2 In long division, when the **dividend** is divided by the **divisor**, the **quotient** is written on the top line and the **remainder** is in the last line. Identify the dividend, divisor, quotient and remainder for $237 \div 9$.
- 3 Copy and complete these statements.
 - **a** $237 \div 9 =$ _____remainder ____
 - **b** $237 = 9 \times ___ + 3$

KEY IDEAS

- ► Long division is used to divide polynomials. At each stage, the leading term of the dividend is divided by the leading term of the divisor. $x + 3 \leftarrow$ quotient divisor $\rightarrow x + 2)x^2 + 5x + 8 \leftarrow$ dividend $x^2 + 2x$
- The quotient and remainder are important elements to identify. In the example, the quotient is x + 3 and the remainder is 2. This means that:

 $(x^2 + 5x + 8) \div (x + 2) = x + 3$ remainder 2 or $\frac{x^2 + 5x + 8}{x + 2} = x + 3 + \frac{2}{x + 2}$. $\frac{x+3}{4} \leftarrow \text{quotient}$ divisor $\rightarrow x+2)\overline{x^2+5x+8} \leftarrow \text{dividend}$ $\frac{x^2+2x}{3x+8}$ $\frac{3x+6}{2} \leftarrow \text{remainder}$

57

54

3

- ► Alternatively, this can be written as x² + 5x + 8 = (x + 2)(x + 3) + 2; that is: dividend = divisor × quotient + remainder
- ► In general, if P(x) is divided by (x a) to produce the quotient Q(x) and the remainder R, then P(x) = (x a)Q(x) + R.

EXERCISE 6B Division of polynomials

d If $(x^3 + 4x^2 - x + 3) \div (x - 1) = x^2 + 5x + 4$ remainder 7, then $x^3 + 4x^2 - x + 3 = ((x - 1))((x - 1)) + ((x - 1))(x - 1)$.

EXAMPLE 6B-1

Dividing a quadratic polynomial by a linear expression

Use long division to find the quotient and remainder for $(2x^2 + 5x - 1) \div (x + 4)$.

THINK

- Divide the leading term in the dividend (2x²) by the leading term of the divisor (x). 2x² ÷ x = 2x.
 Write the result of 2x above 5x in the quotient line.
 Remember to align like terms in columns.
- 2 Work out the remainder by first multiplying 2x by the divisor. $2x(x + 4) = 2x^2 + 8x$. Write the result underneath, then subtract like terms.
- 3 Divide the leading term of -3x 1 by the leading term of the divisor. $-3x \div x = -3$. Write the result of -3 above -1 in the quotient line.
- 4 Work out the remainder by first multiplying -3 by the divisor. -3(x + 4) = -3x 12. Write the result underneath, then subtract like terms.
- **5** Identify the quotient and the remainder.

WRITE

Note: each stage of working has been shown separately.

$$2x + 4)2x^{2} + 5x - 1$$

$$2x(x + 4) = \frac{2x}{x + 4)2x^{2} + 5x - 1}$$

$$2x(x + 4) = \frac{2x^{2} + 8x}{-3x - 1}$$

$$2x(x + 4) = \frac{2x - 3}{x + 4)2x^{2} + 5x - 1}$$

$$2x(x + 4) = \frac{2x^{2} + 8x}{-3x - 1}$$

$$-3(x + 4) = \frac{-3x - 12}{-11}$$

Quotient is 2x - 3, remainder is 11.

3 Copy and complete the working for each long division problem.

- e $(2x^2 3x 11) \div (x 3)$ f $(3x^2 + x + 2) \div (x 1)$
- 5 Write your answers to question 4 in the form: dividend = divisor × quotient + remainder. For example, $2x^2 + 5x 1 = (x + 4)(2x 3) + 11$.
- 6 Expand and simplify the right side of each statement found in question 5 to verify that the statement is true.
- 7 a Divide $x^2 2x 24$ by (x + 4) to find the quotient and remainder.
 - Write the division problem in the form:
 dividend = divisor × quotient + remainder.
 - c What does the value of the remainder tell you about the divisor?

Use long division to find the quotient and remainder for $(x^3 + 2x^2 - 9x - 3) \div (x - 2)$.

THINK

- 1 Divide leading term in dividend (x^3) by leading term of divisor (x) and write the result of x^2 in the quotient line.
- 2 Expand $x^2(x-2)$ to give $x^3 2x^2$ and write the result underneath. Subtract like terms.
- 3 Divide $4x^2$ by x and write the result of 4x in the quotient line.
- 4 Expand 4x(x-2) to give $4x^2 8x$ and write the result underneath. Subtract like terms.
- 5 Divide -x by x and write the result of -1 in the quotient line.
- 6 Expand -1(x 2) to give -x + 2 and write the result underneath. Subtract like terms.
- 7 Identify the quotient and the remainder.

WRITE

$$\begin{array}{r} x^2 + 4x - 1 \\ x - 2 \overline{\smash{\big)} x^3 + 2x^2 - 9x - 3} \\ x^2(x - 2) & \underline{x^3 - 2x^2} \\ 4x^2 - 9x - 3 \\ 4x(x - 2) & \underline{4x^2 - 8x} \\ -x - 3 \\ -1(x - 2) & \underline{-x + 2} \\ -5 \end{array}$$

Quotient is $x^2 + 4x - 1$, remainder is -5.

UNDERSTANDING AND FLUENCY

LOA

8 Use long division to find the quotient and remainder for each division problem.

- **a** $(x^3 2x^2 5x + 7) \div (x 3)$ **b** $(x^3 + 3x^2 + 7x 1) \div (x + 1)$
- c $(x^3 + 6x^2 4x 15) \div (x 2)$ d $(x^3 3x^2 20x + 25) \div (x + 4)$ e $(2x^3 + 3x^2 5x 4) \div (x + 2)$ f $(3x^3 2x^2 7x + 2) \div (x 1)$
- g $(5x^3 12x^2 6x 15) \div (x 3)$ h $(4x^3 + 9x^2 8x 1) \div (x + 1)$ i $(x^4 + 2x^3 4x^2 2x + 8) \div (x + 1)$ j $(x^4 5x^3 + 2x^2 x 3) \div (x 2)$

EXAMPLE 6B-3

Dividing a polynomial that has coefficients of zero by a linear expression

Use long division to find the quotient and remainder for $(3x^4 + 2x^2 - 5) \stackrel{\frown}{=} (x + 1)$.

THINK

CHALLENGE

- 1 Write the 'missing' terms in the dividend with zero as the coefficient to keep like terms in columns.
- **2** Divide $3x^4$ by x and write $3x^3$ in quotient line.
- **3** Expand $3x^3(x+1)$ to give $3x^4 + 3x^3$. Subtract like terms.
- 4 Divide $-3x^3$ by x and write $-3x^2$ in quotient line.
- 5 Expand $-3x^2(x+1)$ to give $-3x^3 3x^2$. Subtract like terms.
- 6 Divide $5x^2$ by x and write 5x in quotient line.
- 7 Expand 5x(x + 1) to give $5x^2 + 5x$. Subtract like terms.
- 8 Divide -5x by x and write -5 in quotient line.
- 9 Expand -5(x + 1) to give -5x 5. Subtract like terms.
- 10 Identify the quotient and the remainder.

WRITE	
	$3x^3 - 3x^2 + 5x - 5$
$(x + 1)3x^{2}$	$+0x^3 + 2x^2 + 0x - 5$
$3x^{3}(x+1)$ $3x^{4}$	$^{4} + 3x^{3}$
	$-3x^3 + 2x^2 + 0x - 5$
$-3x^2(x+1)$	$-3x^3 - 3x^2$
	$5x^2 + 0x - 5$
5x(x + 1)	$5x^2 + 5x$
	-5x-5
-5(x+1)	-5x - 5
	0
Quotient is 3x2	$3^{3} - 3x^{2} + 5x - 5$

Quotient is 3*x* remainder is 0.

9 Use long division to find the quotient and remainder for each division problem.

a $(x^3 + x + 21) \div (x + 3)$

 $(4x^4 - 3x^2 - 5) \div (x - 1)$

- **b** $(2x^3 3x^2 6) \div (x 2)$ **d** $(3x^4 - 41) \div (x + 2)$
- 10 a If $P(x) = x^3 3x^2 10x + k$, for what value of k does $P(x) \div (x 2)$ give a remainder of zero.
 - **b** Use the divisor and quotient to write the linear factor and the quadratic factor of P(x). Hence, show that you can write P(x) as the product of three linear factors.
- 11 a If $P(x) = x^3 + 9x^2 + 23x + 15$, for what three values of k does $P(x) \div (x + k)$ give a remainder of zero.
 - **b** Write P(x) as the product of three linear factors.

12 Use long division to find the quotient and remainder for each division problem.

- a $(x^3 3x^2 + 2x 4) \div (x^2 + 1)$
- **b** $(x^4 + x^3 7x^2 + 3x + 5) \div (x^2 3)$
- c $(2x^4 + 6x^2 1) \div (x^2 + 2)$

Reflect

Why is knowing how to divide polynomials useful?

6C Remainder and factor theorems

Start thinking!

Consider the polynomial $P(x) = x^3 + x^2 - 10x + 8$.

- **1** a Use long division to find the remainder when P(x) is divided by (x 3).
- **b** Evaluate P(3). What do you notice?
- **2** a Use long division to find the remainder when P(x) is divided by (x + 2).
 - **b** Evaluate P(-2). What do you notice?
- 3 a Without using long division, use the pattern you noticed in questions 1 and 2 to show how to work out the remainder when P(x) is divided by (x 4).
 - **b** Use long division to verify your answer to part **a**.
- **4** a Evaluate P(1) to find the remainder when P(x) is divided by (x 1).
 - **b** Use long division to verify your answer to part **a**.
- 5 The pattern or shortcut you have used is called the remainder theorem. Explain how you can find the remainder without using long division when P(x) is divided by:

a x-5 **b** x+1 **c** x-2

6 What does the remainder in question 4 tell you about the relationship between P(x) and x - 1? This is the basis for the factor theorem.

KEY IDEAS

- ► Remainder theorem
 - ▷ When a polynomial P(x) is divided by (x a), the remainder is P(a). For example: when P(x) is divided by (x - 2), the remainder is P(2)when P(x) is divided by (x + 3), the remainder is P(-3).
- Factor theorem
 - ▷ When a polynomial P(x) is divided by (x a) and the remainder P(a) is zero, then (x a) is a factor of P(x). For example, $P(x) = x^3 + x^2 10x + 8$ has a factor of (x 1), as P(1) = 0.
- ▶ If a linear factor of a cubic polynomial is known, long division can be used to find the quadratic factor. For example, dividing $P(x) = x^3 + x^2 10x + 8$ by (x 1) gives a quotient of $x^2 + 2x 8$.
- Factorising this quotient allows us to write the polynomial as a product of its linear factors.
- $P(x) = x^{3} + x^{2} 10x + 8$ = (x - 1)(x² + 2x - 8) = (x - 1)(x - 2)(x + 4)
- ► In general, if P(x) is divided by a factor (x a) to produce the quotient Q(x), then P(x) = (x a)Q(x).

EXERCISE 6C Remainder and factor theorems

EXAMPLE 6C-3 Using the factor theorem to find a linear factor of a polynomial

Use the factor theorem to find a linear factor of the polynomial $P(x) = x^3 + 5x^2 - 2x - 24$.

THINK

- 1 Write the polynomial.
- **2** Look for a value of x where P(x) = 0. Try P(1), P(-1), P(2), etc. That is, try x values that are factors of the constant term in P(x).
- **3** Use the factor theorem to identify a linear factor of P(x).

WRITE

 $P(x) = x^3 + 5x^2 - 2x - 24$ $P(1) = 1 + 5 - 2 - 24 = -20 \neq 0$ $P(-1) = -1 + 5 + 2 - 24 = -18 \neq 0$ P(2) = 8 + 20 - 4 - 24 = 0

So (x - 2) is a factor of P(x).

b $P(x) = x^3 - x^2 - 14x + 24$

 $f P(x) = 2x^3 - 5x^2 - 14x + 8$

 $P(x) = 4x^3 + 4x^2 - 21x + 9$

d $P(x) = x^3 - 19x - 30$

7 Use the factor theorem to find a linear factor of each polynomial.

- a $P(x) = x^3 + 8x^2 + 9x 18$
- c $P(x) = x^3 4x^2 9x + 36$
- e $P(x) = 3x^3 10x^2 + x + 6$
- **g** $P(x) = 8x^3 26x^2 + 17x + 6$
- 8 Fully factorise each expression.

a
$$(x-6)(x^2+7x+12)$$

b $(x+4)(x^2-9x+14)$
c $(x+3)(x^2-x-30)$
d $(x-2)(x^2-16)$
e $(x+1)(x^2+4x+4)$
f $(x-7)(x^2+5x-24)$

EXAMPLE 6C-4

Factorising a cubic polynomial

Factorise $x^3 - 7x^2 + 7x + 15$.

THINK

- 1 Name the polynomial.
- 2 Look for a value of x where P(x) = 0. Try P(1), P(-1), P(2),... (factors of 15).
- **3** Identify a linear factor of P(x).
- **4** Use long division to find the quotient when P(x) is divided by (x + 1). You will know you have performed the division correctly as the remainder should be zero.
- 5 Write P(x) as the product of the divisor and quotient.
- 6 Factorise the quadratic factor.

WRITE

Let $P(x) = x^3 - 7x^2 + 7x + 15$. $P(1) = 1 - 7 + 7 + 15 \neq 0$ P(-1) = -1 - 7 - 7 + 15 = 0

So (x + 1) is a factor of P(x).

$$x^{2} + 8x + 15$$

$$x + 1)\overline{x^{3} - 7x^{2} + 7x + 15}$$

$$\frac{x^{3} + x^{2}}{-8x^{2} + 7x + 15}$$

$$\frac{-8x^{2} - 8x}{15x + 15}$$

$$\frac{-8x^{2} - 8x}{15x + 15}$$

$$P(x) = (x + 1)(x^{2} - 8x + 15)$$

$$= (x + 1)(x - 3)(x - 5)$$

9	Factorise each polynomial.	-		
	a $x^3 + 6x^2 + 3x - 10$	b $x^3 + 3$	$3x^2 - 4x - 12$	2
	c $x^3 + 4x^2 - 19x + 14$	d $x^3 + 5$	$5x^2 - 4x - 20$)
	e $x^3 - 5x^2 - 8x + 48$	f $x^3 - 2$	$2x^2 - 9x + 18$	3
	g $2x^3 + x^2 - 8x - 4$	h $4x^3$ –	$9x^2 - 19x +$	30
	i $6x^3 - 23x^2 - 6x + 8$	j $12x^3$ -	$-17x^2 + 2x -$	+ 3
10	Factorise each polynomial in question 7 .			
11	What is the maximum number of factors P	(x) can ha	ave if $P(x)$ is:	
	a quadratic polynomial?	b cubic	polynomial?	
	c quartic polynomial?	d polyn	omial of deg	ree 7?
	e polynomial of degree 12?	f polyn	omial of deg	ree <i>n</i> ?
12	a How many linear factors does the polyn	omial P(:	x) have if	
	P(x) = (x+2)(x-3)(x+4)?			
	b Without expanding, what is the constan	t term of	P(x)? Explai	n.
	c To find linear factors using the factor th	eorem, yo	ou look for v	alues of x that make
	P(x) = 0. What are these x values and here	ow <mark>do th</mark> e	y relate to th	e constant term?
13	Consider the polynomial $P(x) = x^3 + 2x^2 - 2x^2$	5x - 6.		
	a Use the factor theorem to find a linear f	actor of I	P(x).	NOTE Remember to
	b Use the factor theorem to find another l	or of $P(x)$.	try factors of -6 to	
	c Use the factor theorem to find a third li	near facto	or of $P(x)$.	identify the x value that makes $P(x) = 0$
	d Write $P(x)$ as a product of three factors			that makes $P(x) = 0$.
	e Check your answer to part d by expandi	ng and si	mplifying the	e product.
1.4	a Use your enginers to question E to ident	; fy three f	actors of the	$\mathbf{p}_{\mathbf{r}}$
14	a Use your answers to question 5 to ident $W_{\text{rite}} P(u) \approx a \pi reduct of three fectors$	ity three I	actors of the	r polynomial $r(x)$.
	b write $P(x)$ as a product of three factors			
	Check your answer to part b by expandi	ng and si	mplifying the	e product.
15	a Use your answers to question 6 to ident	ify three f	actors of the	e polynomial $P(x)$.
	b Write $P(x)$ as a product of three factors			
16	Using only the factor theorem find three factor	actors of	$x^3 + 2x^2 - 11$	x - 12 and hence
	write the polynomial as a product of three	factors.	2 11	
47				1 0 1
17	Explain why the strategy used in question 1	lb is not s	uitable to fac	ctorise each of these
	polynomials. $(x^3 + 12x^2 + 4x - 2)$	L 3		
	a $6x^3 + 13x^2 + 4x - 3$	$x^{3} + 3$	$5x^2 + 10x + 8$)
18	Find a polynomial of degree 3 with leading	g coefficien	nt of 1 that h	as a remainder of 5
	when divided by $x - 2$.			
19	Factorise each quartic polynomial.		Doflact	
	a $x^4 - x^3 - 7x^2 + x + 6$		Reflect	
	b $x^4 + 8x^3 + 17x^2 - 2x - 24$		How does th	e factor theorem help
				1.13

c $2x^4 + 13x^3 + 21x^2 + 2x - 8$

р you factorise a polynomial?

PROBLEM SOLVING AND REASONING

6D Solving polynomial equations

Start thinking!

- 1 Consider the quadratic polynomial equation $x^2 + 3x 18 = 0$.
 - **a** What is the maximum number of solutions this equation can have?
 - **b** Check which of these *x* values is a solution to the equation.

i x = -1ii x = 1iii x = -2iv x = 3v x = -4vi x = 5vii x = -6vii x = 7

- **c** Without substitution, how could you identify if each x value is a *possible* solution? (Hint: look at the constant term on the left side of the equation.)
- 2 Consider the quadratic polynomial equation $x^2 + x 6 = 0$.
 - **a** Without substitution, identify which of these *x* values is a *possible* solution to the equation? Explain your decision.
 - i x = -1 ii x = 5 iii x = -3 iv x = 4
 - v = -2 vi = 6 vii = 2 viii = 8
 - **b** From the set of possible x values identified in part **a**, check which ones are a solution.
- 3 Repeat question 2 for the polynomial equation $x^3 + x^2 4x 4 = 0$.
- 4 a Factorise the left side of the equation in question 1.
 - **b** Explain how you can use the Null Factor Law to solve the equation.
- 5 Solve the equation in question 2 using the Null Factor Law.

KEY IDEAS

- ▶ Null Factor Law: if $a \times b = 0$ then a = 0 or b = 0 or both a and b are 0.
- ► The polynomial equation P(x) = 0 can be solved by applying the Null Factor Law. P(x) must be in factor form.
- If P(x) = (x a)(x b)(x c) then P(x) = 0 has the solution x = a, x = b or x = c.
- To factorise P(x) so it is a product of linear factors:
 - 1 apply the factor theorem to find a linear factor
 - 2 divide P(x) by the linear factor to obtain the quotient
 - 3 factorise the quotient.
- If P(x) is a cubic polynomial, the quotient will be a quadratic factor that may be factorised into two linear factors.
- If P(x) is a quartic polynomial, the quotient will be a cubic factor. The strategy of using the factor theorem and long division will need to be repeated with the quotient.

10A

EXERCISE 6D Solving polynomial equations

1	Factorise th	e left side of	each quadratic	equation.
---	--------------	----------------	----------------	-----------

a	$x^2 + 5x + 4 = 0$	b	$x^2 - 9x + 18 = 0$	c	$x^2 - 2x - 8 = 0$
d	$x^2 + 6x + 9 = 0$	e	$x^2 - 25 = 0$	f	$2x^2 - 14x = 0$

2 Solve each equation in question 1 using the Null Factor Law.

EXAMPLE 6D-1	PLE 6D-1 Solving polynomial equations in factor form				
Solve each equation.	a $(x-1)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3$	(x-2)=0	b $(2x + 1)(x - 5)(x - 4)(x + 4) = 0$		
THINK		WRITE			
a 1 As the left side (LS) form and the right s apply the Null Factor	is in factor ide (RS) is 0, or Law.	a $(x-1)(x+x-1=0$ o	3) $(x - 2) = 0$ r x + 3 = 0 or x - 2 = 0		
2 Solve each linear eq	uation.	x = 1 or x =	= -3 or x = 2		
3 Write the solution.		<i>x</i> = −3, 1 o	r 2		
b 1 Apply the Null Fact	or Law.	b $(2x + 1)(x - 5)(x - 4)(x + 4) = 0$ 2x + 1 = 0 or $x - 5 = 0$ or $x - 4 = 0$ or $x + 4 = 0$			
2 Solve each linear eq	uation.	$x = -\frac{1}{2}$ or x	x = 5 or x = 4 or x = -4		
3 Write the solution.		$x = -4, -\frac{1}{2}$, 4 or 5		
3 Solve each a $(x+2)$ c $(x-6)$ e $(2x-1)$ 4 Solve each a $(x+3)$ c $(x+4)$ e $5x(3x)$ 5 Fully fact a $(x+3)$ c $(x-2)$ e $(x+3)$ g $(x-5)$ i $(x-4)$ k $3(x+3)$	h equation. (x + 5)(x - 4) = 0 (x - 2)(x + 3) = 0 (x - 1)(x - 1) = 0 h equation. (x - 4)(x + 7)(x - 1)(x - 1	0 $-1) = 0$ 0 $= 0$ of each equation 0	b $(x + 1)(x - 3)(x + 4) = 0$ d $x(x + 2)(x - 9) = 0$ f $(3x - 2)(2x + 7)(x + 5) = 0$ b $(x - 2)(x - 5)(x - 3)(x + 6) = 0$ d $x^2(x + 5)(x - 6) = 0$ f $(4x - 3)(2x + 5)(x^2 + 1) = 0$ h. Hence, solve each equation. b $(x - 3)(x^2 - x - 20) = 0$ d $(x + 4)(x^2 + 6x - 7) = 0$ f $x(x - 1)(x^2 - 1) = 0$ h $(x + 2)(x^2 + 6x + 9) = 0$ j $(x + 1)(x^2 + 2x + 2) = 0$ l $(x - 2)(2x^2 + 4x - 6) = 0$		

EXAMPLE 6D-2

Solving a cubic polynomial equation

Solve $x^3 - 7x^2 + 7x + 15 = 0$.

THINK

- 1 Name the polynomial.
- 2 Use the factor theorem to identify a linear factor of P(x).
- 3 Use long division to find the quotient when P(x) is divided by (x + 1).

- 4 Write P(x) as the product of the divisor and quotient.
- 5 Factorise the quadratic factor.
- 6 Solve P(x) = 0 using the Null Factor Law.

WRITE

Let $P(x) = x^3 - 7x^2 + 7x + 15$. $P(1) = 1 - 7 + 7 + 15 \neq 0$ P(-1) = -1 - 7 - 7 + 15 = 0So (x + 1) is a factor of P(x).

$$\begin{array}{r} x^2 - 8x + 15 \\ x + 1 \overline{\smash{\big)} x^3 - 7x^2 + 7x + 15} \\ \underline{x^3 + x^2} \\ \hline -8x^2 + 7x + 15 \\ \underline{-8x^2 - 8x} \\ 15x + 15 \\ \underline{15x + 15} \\ 0 \end{array}$$

 $P(x) = (x + 1)(x^2 - 8x + 15)$ = (x + 1)(x - 3)(x - 5) For P(x) = 0,

$$(x+1)(x-3)(x-5) = 0$$

x = -1, 3 or 5

UNDERSTANDING AND FLUENCY

6 Solve each equation. $x^3 + 6x^2 + 5x - 12 = 0$ **b** $x^3 - 5x^2 - 4x + 20 = 0$ c $x^3 + x^2 - 36x - 36 = 0$ **d** $x^3 + 10x^2 + 21x = 0$ $e^{-x^3} - 7x - 6 = 0$ **f** $x^3 + 2x^2 + 5x + 10 = 0$ **g** $x^3 + 3x^2 - 9x - 27 = 0$ **h** $x^3 + 9x^2 + 24x + 16 = 0$ i $x^3 - 3x^2 - 3x - 4 = 0$ i $x^3 - 6x^2 + 12x - 8 = 0$ **7** Solve each equation by first taking out a common factor. **a** $2x^3 - 2x^2 - 20x - 16 = 0$ **b** $3x^3 - 15x^2 - 3x + 15 = 0$ c $5x^3 + 10x^2 - 20x - 40 = 0$ **d** $4x^3 + 24x^2 + 44x + 24 = 0$ 8 Solve each equation by first taking out a negative common factor. **b** $-x^3 + 4x^2 + 17x - 60 = 0$ **a** $-x^3 - 2x^2 + 9x + 18 = 0$ $-2x^3 + 8x^2 + 2x - 8 = 0$ **d** $-3x^3 - 3x^2 + 24x + 36 = 0$ 9 Solve each equation using the quadratic formula. Write the solutions as exact values. **a** $x^3 + x^2 - 3x + 1 = 0$ **b** $x^3 + 6x^2 + 9x + 2 = 0$

c $x^3 + x^2 - 10x - 12 = 0$ **d** $x^3 + 4x^2 - 27x - 20 = 0$ 10 Follow these steps to solve $x^4 + x^3 - 7x^2 - x + 6 = 0$.

- a Name the polynomial on the left side of the equation as P(x) and identify one of its linear factors.
- **b** Use long division to find the quotient when P(x) is divided by this linear factor. Write P(x) as the product of the divisor and quotient, Q(x).
- c Identify a linear factor of Q(x) and use long division to find its quadratic factor.
- d Factorise the quadratic factor.
- e Write P(x) as a product of four linear factors and hence solve P(x) = 0 using the Null Factor Law.

11 Solve each equation.

- a $x^4 5x^3 + 5x^2 + 5x 6 = 0$ $x^4 + 7x^3 + 8x^2 - 28x - 48 = 0$
- e $x^4 5x^3 + 20x 16 = 0$

12 What is the maximum number of solutions to P(x) = 0 if P(x) is:

- a a linear polynomial?
- c a cubic polynomial?
- e a polynomial of degree 6?
- **b** $x^4 4x^3 7x^2 + 22x + 24 = 0$ d $x^4 - x^3 - 19x^2 - 11x + 30 = 0$ f $x^4 - 13x^2 + 36 = 0$

b a quadratic polynomial?

- **d** a quartic polynomial?
- f a polynomial of degree *n*?
- 13 a Using only the factor theorem, find three linear factors of P(x) where $P(x) = x^3 - 2x^2 - 5x + 6.$
 - **b** Hence, solve P(x) = 0.
- 14 Explain why $x^3 + x^2 2x 8 = 0$ has only one solution.
- 15 Explain why $x^3 5x^2 + 3x + 9 = 0$ has only two solutions.
- **16** The volume of a vanilla slice is 192 cm^3 . Its length is twice the height and the width is 2 cm more than the height.
 - a Write a polynomial to represent the volume of the slice.
 - TOBLERONE TOBLERONE **b** Solve a polynomial equation to find the dimensions of the slice.
- **17** The volume of a Toblerone chocolate box is 450 cm³. The height of its triangular face is 1 cm less than the base and its perpendicular length is five times the size of the base. Find its dimensions.
- **18** $P(x) = x^4 2x^3 13x^2 + 14x + 24$ has the quadratic factor $(x^2 - x - 2)$. Factorise P(x) and hence solve P(x) = 0.
- **19** Solve each equation.

a
$$x^5 - x^4 - 17x^3 - 19x^2 + 16x + 20 = 0$$

b $x^5 - 2x^4 - 15x^3 + 20x^2 + 44x - 48 = 0$

Reflect

In what form does a polynomial equation need to be before the Null Factor Law can be used?

10 A

6E Graphs of polynomial relationships

Start thinking!

A polynomial relationship can be shown as a graph. In chapters 4 and 5, you worked with linear and quadratic relationships. Here you will look at cubic and quartic relationships.

- 1 The basic cubic graph has the rule $y = x^3$.
 - **a** Draw the graph using a table of values (for $-3 \le x \le 3$) or digital technology.
 - **b** Identify the *x* and *y*-intercepts.
 - c An important feature on this graph is the point of inflection at (0, 0). Mark this on your graph.
- 2 The basic quartic graph has the rule $y = x^4$.
 - **a** Draw the graph using a table of values (for $-3 \le x \le 3$) or digital technology.
 - **b** Identify the *x* and *y*-intercepts.
 - **c** This graph looks similar to $y = x^2$. How is it different? Draw the graph of $y = x^2$ on the same Cartesian plane to illustrate your answer.
- 3 Sketch the graph of each polynomial relationship. To give a sense of scale, you can show the coordinates of a point on the graph. Label the point where x = 2.

a $y = -x^3$ **b** $y = -x^4$

KEY IDEAS

- ► To sketch a polynomial relationship:
 - 1 write the polynomial in factor form
 - 2 identify the x-intercepts (find x when y = 0)
 - 3 identify the *y*-intercept (find *y* when x = 0)
 - 4 draw a smooth curve through the known points
 - 5 if necessary, find the coordinates of another point to confirm the orientation of the graph.
- Graphs of cubic relationships
 - ▷ The graph of y = (x a)(x b)(x c) has x-intercepts a, b and c, and y-intercept -abc. The curve starts from the bottom left of the Cartesian plane.
 - ▷ The graph of y = -(x a)(x b)(x c) is the reflection in the x-axis of y = (x a)(x b)(x c).
- Graphs of quartic relationships
 - ▷ The graph of y = (x a)(x b)(x c)(x d) has x-intercepts a, b, c and d, and y-intercept abcd. The curve starts from the top left of the Cartesian plane.
 - ▷ The graph of y = -(x a)(x b)(x c)(x d) is the reflection in the x-axis of y = (x a)(x b)(x c)(x d).

EXERCISE 6E Graphs of polynomial relationships

EXAMPLE 6E-1

Sketching a cubic relationship using intercepts

Sketch the graph of y = (x + 2)(x + 4)(x - 3).

THINK

- 1 Substitute *y* = 0 and use the Null Factor Law to find the *x*-intercepts.
- **2** Substitute x = 0 to find the *y*-intercept.
- **3** Mark the four intercepts on a Cartesian plane and draw a smooth curve through them. Curve starts from bottom left of Cartesian plane. Label with the rule.

WRITE

y = (x + 2)(x + 4)(x - 3)When y = 0, (x + 2)(x + 4)(x - 3) = 0x + 2 = 0 or x + 4 = 0 or x - 3 = 0x = -2, -4 or 3x-intercepts are -4, -2 and 3.

When
$$x = 0$$
, $y = (2)(4)(-3) = -24$
y-intercept is -24.

$$y = (x + 2)(x + 4)(x - 3)$$

x

UNDERSTANDING AND FLUENCY

3 a Find the *x*- and *y*-intercepts for:

i y = (x + 7)(x - 2)(x - 3)

ii
$$y = -(x+7)(x-2)(x-3)$$

b How is the graph of y = -(x + 7)(x - 2)(x - 3) different from the graph of y = (x + 7)(x - 2)(x - 3)?

4 Sketch the graph of each cubic relationship.

a y = -(x + 5)(x - 1)(x - 3) **b** y = -(x - 6)(x + 1)(x - 2) **c** y = -(x + 2)(x + 3)(x - 5)**d** y = -x(x + 7)(x - 4)

EXAMPLE 6E-2

Sketching a quartic relationship using intercepts

Sketch the graph of y = (x - 2)(x + 3)(x + 1)(x - 4).

THINK

- 1 Substitute *y* = 0 and use the Null Factor Law to find the *x*-intercepts.
- **2** Substitute x = 0 to find the *y*-intercept.
- 3 Mark the five intercepts on a Cartesian plane and draw a smooth curve through them. Curve starts from top left of Cartesian plane. Label with the rule.

WRITE

y = (x - 2)(x + 3)(x + 1)(x - 4)When y = 0, (x - 2)(x + 3)(x + 1)(x - 4) = 0x = 2 or x = -3 or x = -1 or x = 4x-intercepts are -3, -1, 2 and 4.

When x = 0, y = (-2)(3)(1)(-4) = 24y-intercept is 24.

UNDERSTANDING	 5 Sketch the graph of each quartic relation a y = (x - 1)(x + 2)(x + 3)(x - 3) c y = x(x - 2)(x - 6)(x + 5) e y = (2x - 3)(x + 2)(x + 1)(x - 4) 6 Sketch the graph of each polynomial re 	onship. b $y = (x + 4)(x + 1)(x - 1)(x + 3)$ d $y = -(x - 3)(x + 3)(x + 1)(x - 1)$ f $y = -(3x - 1)(x + 3)(x + 1)(x + 2)$ lationship. (Hint: you will need to first
AND FLUENCY	factorise the polynomial.) a $y = x^3 - 3x^2 - 13x + 15$ c $y = x^3 - 2x^2 - 3x$ e $y = x^4 - 15x^2 - 10x + 24$ g $y = -x^4 + 10x^2 - 9$	b $y = -x^3 - 2x^2 + 16x + 32$ d $y = -2x^3 + 8x^2 - 2x - 12$ f $y = x^4 - 9x^3 + 6x^2 + 56x$ h $y = -2x^4 - 9x^3 + 18x^2 + 71x + 30$
	7 Use digital technology to check your gr	aphs in question 6.

- What type of polynomial relationship is this? a
- **b** Find the x- and y-intercepts.
- c As the leading coefficient of the polynomial is positive, should the graph start from the top left or bottom left of the Cartesian plane?
- Sketch the graph. Use digital technology to verify your answer. d
- What effect does the repeated factor of (x 3) have on the graph?

9 Sketch the graph of each cubic relationship.

a	<i>y</i> =	(<i>x</i> +	4)(x -	$1)^{2}$	
---	------------	--------------	--------	----------	--

b $v = (x+2)^2(x-5)$ c y = -(x-2)(x-7)(x-2)d $v = -(2x + 1)(x - 4)^2$

10 Sketch the graph of each quartic relationship.

a $y = (x - 3)(x + 2)(x + 1)^2$	b $y = -(x-2)^2(x-4)(x+2)$
c $y = -x(x-2)(x+3)^2$	d $y = x^2(x+5)(x-3)$
e $y = (x - 1)^2(x + 2)^2$	f $y = -x^2(x-4)^2$

- **11** The effect of having a repeated factor in a polynomial relationship means that an x-intercept is also a turning point. Investigate the effect of having a cubed repeated factor in a quartic relationship. That is, find what happens at x = a for the graph of the form $y = (x - a)^3(x - b)$. Use digital technology and try different values for a and b.
- 12 A water ride can be modelled by the polynomial relationship $h = -\frac{1}{5}(t^3 - 11t^2 + 39t - 45)$, where h is the height above the ground in metres and t is the time in seconds from the start of the ride.
 - a Sketch a graph of this relationship.
 - **b** At what height above the ground does a person start the ride?
 - c How high is a person after 1 second?
 - d The ride descends to its lowest point. How long does this take?
 - How long does it take for the ride to ascend and then descend again to its lowest point?

13 Amelia monitors the change in value of shares over the month of June. She finds that the dollar change in value, y, after x days can be approximated by a cubic relationship, where y increases

from \$0 to \$21 after 5 days and is zero again after 12 days and 20 days.

- Sketch a graph of this cubic relationship. a
- Find the rule for this relationship. h
- Use this relationship to estimate the change in value at the end of June. С

14 Sketch the graph of each polynomial relationship, clearly labelling all intercepts.

- a y = (x 1)(x + 2)(x + 1)(x 4)(x + 5)
- **b** $y = -x(x-6)(x+3)(x-2)^2$
- **15** Use digital technology to produce the graphs in question 14 and locate and identify the coordinates of the turning points.

Reflect

What are the key features used to sketch a polynomial relationship?

PROBLEM SOLVING AND REASONING

6F Polynomials and transformations

Start thinking!

Graphs of polynomial relationships can also be transformed by performing dilation, reflection, translation or a combination of these.

- 1 Consider the graph of $y = x^3$. For each of the transformations listed below:
 - **i** describe how the graph of $y = x^3$ will be changed
 - ii sketch the new graph that is produced
 - iii write the rule for the new graph.
 - **a** dilate by a factor of 2
 - **b** reflect in the *x*-axis
 - c translate 3 units up
 - d translate 2 units right
 - e translate 1 unit left and 4 units down
- 2 Repeat question 1 for the graph of $y = x^4$.

k-

KEY IDEAS

- ► Transformations such as dilation, reflection and translation can be performed on the graph of y = P(x).
 - ▷ Dilation by a factor of *a* produces y = aP(x).
 - ▷ Reflection in the x-axis produces y = -P(x).
 - \triangleright Vertical translation of k units produces y = P(x) + k.
 - ▷ Horizontal translation of *h* units produces y = P(x h).
- A combination of transformations can be performed on the graph of y = P(x) to produce the graph of y = aP(x - h) + k.

EXERCISE 6F Polynomials and transformations

4 Write the rule for each graph in question 3.

EXAMPLE 6F-1

Performing transformations on the graph of a polynomial relationship

Perform a transformation on the graph of y = P(x) to produce the graph of:

a y = P(x) + 2 **b** y = P(x + 2)**c** y = -P(x).

THINK

- **a** 1 Identify the transformation.
 - 2 No dilation or reflection so the shape remains the same. Move the original graph 2 units up. (0, 0) moves to (0, 2) and (3, 0) moves to (3, 2). Draw y = P(x) and y = P(x) + 2 on the same Cartesian plane.

a Graph of y = P(x) to be translated 2 units up.

v = P(x)

b 1 Identify the transformation.

- 2 No dilation or reflection so the shape remains the same. Move the original graph 2 units left. (0, 0) moves to (-2, 0) and (3, 0) moves to (1, 0). Draw y = P(x) and y = P(x + 2) on the same Cartesian plane.
- c 1 Identify the transformation.
 - 2 No dilation or translation. Draw y = P(x) and y = -P(x) on the same Cartesian plane.

• Graph of y = P(x) to be reflected in the *x*-axis.

8 Compare the graph produced after reflecting $y = x^3$ in the x-axis with the graph produced after reflecting $y = x^3$ in the y-axis. What is the rule for each transformed graph?

- **9** For each cubic relationship:
 - i describe the transformations to be performed on $y = x^3$ to produce the graph of the relationship
 - ii identify the coordinates of the point of inflection
 - iii find the x- and y-intercepts
 - iv sketch the graph.

a
$$y = \frac{1}{2}(x-3)^3 + 4$$
 b $y = -2(x+1)^3 - 2$

10 Use digital technology to verify your answers to question **9**.

Reflect

How are transformations useful when sketching a polynomial relationship? 10 A

CHAPTER REVIEW

SUMMARISE

Create a summary of this chapter using the key terms below. You may like to write a paragraph, create a concept map or use technology to present your work.

polynomial	dividend	factor t	heorem	turning point
leading term	divisor	polynoi	nial relationship	transformations
leading coefficient	quotient	cubic re	elationship	dilation
constant	remainder	point o	f inflection	reflection
degree of polynomial	remainder theorem	quartic	relationship	translation
MULTIPLE-CHOICE				
6A 1 Which expressio	on is a polynomial?	60 7	Which expression	is a factor of
10A A $x^2 + \sqrt{x}$	B $x^3 - 2x$	10A	$x^3 - 4x^2 + x + 6?$	
$C \frac{3x}{3x}$	D $x^2 + x^{-1}$		A $x - 1$	B <i>x</i> – 2
$x^2 + 1$			C <i>x</i> + 3	D $x + 6$
6 A 2 The degree of the $4x^2 - 3x^4 + x^3 - A$ 1 B 2	the polynomial 2x is: C 3 D 4	6D 8 10A	The leading term i raised to the powe number of solutio	n a polynomial is r <i>n</i> . The maximum ns it could have is:
6A 3 The coefficient of	of the leading term in		A n	B <i>n</i> + 1
the expression 3	$-2x^2 + 5x^3 + 7x$ is:		C <i>n</i> – 1	D impossible to tell
A 3 B -2	C 5 D 7		xx 1.00	
		6U 9	How many differen	nt solutions does $2(1 + 1) = 0.1 + 12$
6B 4 When $x^2 + 6x - 6x$	3 is divided by $x - 2$,	10A	(x + 1)(x - 1)(x + 1)	2)(x + 1) = 0 have?
10A the remainder is			A I D Z	U 3 D 4
A 13 B -19	$\mathbf{P} = \mathbf{C} \mathbf{S} + \mathbf{D} = \mathbf{H}$	6E 10	The graph of $y = 0$	(x-3)(x+2)(x-5)
6B 5 Which of these	is correct?	10A	has a y-intercept o	f:
10A A $(5x^2 - x + 2)$	$\dot{x} \div (x - 4) = 5x + 19$		A 3 B -2	C 5 D 30
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$(1) \div (x - 1) = 2x - 5$	6E 11	The graph of $y = 0$	$(x-1)^3$ has a point of
remainder –	$\frac{1}{2} \cdot (x - 1) = 3x - 3$	10A	inflection at:	
$C (4x^2 - x + 8)$	$\dot{x} \div (x - 2) = 4x - 9$		$\mathbf{A} x = 1$	B $x = -1$
remainder –1	10		$\mathbf{C} x = 0$	D $y = 1$
D $(2x^2 - x + 1)$	$\div (x-5) = 2x+9$			C
remainder 46	Ő		The transformatio	in performed on the
	2^{2} , 1^{2} , 1^{1}	10A	$y = (x + 5)^3$ is a tr	produce the graph of
b When $P(x) = x^3$	$-2x^2$ is divided by		y = (x + 3) is a life	R 5 units laft
(x - 1), the remains (x - 1), the	$\frac{D}{D} = D(1)$		\sim 5 units light	D 5 units down
$\begin{array}{c} \mathbf{A} P(-1) \\ \mathbf{C} P(-2) \end{array}$	$\mathbf{D} P(1)$			J J units down
C P(-2)	$\mathbf{D} P(2)$			

SHORT ANSWER

10A 18 Fully factorise the polynomial $x^4 - 2x^2 + 1$.

ANALYSIS

The infinity symbol

You are familiar with the infinity symbol – it looks like the number 8 on its side. Its shape is like that of a cubic relationship with three x-intercepts.

- a It is possible to model the infinity sign using two cubic relationships graphed for the same set of x values.
 - i Complete this table for $y = x^3 x$.

- ii Repeat part i for $y = -x^3 + x$.
- iii On a Cartesian plane, plot the points in the tables from parts i and ii. Join the points with a smooth curve.
- iv Describe the set of x values used for these two graphs.
- **v** Do the turning points for the two relationships occur at x = -0.5 and 0.5? Explain.
- vi Use digital technology to draw the graphs of these two relationships for the set of x values described in part iv. Find the coordinates of the turning points.
- **b** It is also possible to model the infinity symbol by tracing the path a point takes as it moves from an angle of 0° with the x-axis to an angle of 360° with the x-axis.

10A 19 Find the solution to the equation $-3x^3 + 9x^2 + 30x - 72 = 0.$

> The coordinates of all points (x, y) on the infinity symbol can be represented by the values $(\cos \theta, \frac{\sin 2\theta}{2})$, where θ is the angle the line joining the point with the origin makes with the x-axis.

i Construct a table for x and y using angles of θ every 15° from 0° to 360°. (This number of points is necessary to get an accurate representation of the graph.)

Angle (θ)	χ [cos θ]	$\frac{y}{\left(\frac{\sin 2\theta}{2}\right)}$
0°		
15°		
30°		
345°		
360°		

- ii Complete the table, giving your answers correct to two decimal places, if necessary. You may find some of the trigonometric values negative as the angle increases beyond 90°. You will understand the reason for this when you study the trigonometric ratios for angles greater than 90° in Chapter 8.
- iii Plot the points (x, y) on a Cartesian plane. Join them with a smooth curve. (Alternatively, you could use a spreadsheet to plot the graph.)
- iv Describe the shape of the graph.
- **v** Describe the set of *x* and *y* values used for the graph.
- c Compare the two models. Do you consider one to be a better model of the infinity symbol than the other? Explain.

CONNECT

Modelling a roller coaster ride

Engineers use polynomials to model roller coaster rides. Relationships can be formed for the height of the ride after a given time. For example, one relationship where *h* is the height in metres of a roller coaster after *t* seconds is

 $h = -0.5t^{6} + 5t^{5} - 13.75t^{4} - 5t^{3} + 63.5t^{2} - 59t + 20.$

You can use digital technology to produce its graph.

In this task, you will be looking at a few simpler relationships to model sections of roller coaster rides.

Your task

You are to complete the following three problems. Include all necessary graphs and working to justify your answers.

Problem 1

There are three rollercoaster rides at a fun park. Each can be represented by a polynomial relationship with height *h* in metres after *t* seconds.

- Ride of terror: $h = -0.1t^3 + 1.8t^2 9.6t + 16$
- Fear factor: $h = 0.3t^3 5t^2 + 21t$
- Ride of your life: $h = -2t^4 + 21t^3 61t^2 + 36t + 36$

Describe each ride to your friend who will be visiting the fun park the next day. Include information such as the initial height of the ride, times when the ride skims the ground or goes through an underground tunnel and the realistic duration of the ride. Use a sketch graph to help you.

Your friend is nervous of extreme heights. Use digital technology to find the maximum height of each ride.

Problem 2

A new roller coaster ride is to be designed so that, after completing a loop, it moves up from ground level, skims the ground again after a further 3 seconds and finishes on the ground after 7 seconds. It needs to have two thrilling 'up and down' sections. Determine a suitable polynomial relationship to model the conditions of this ride after completing the loop. Explain your reasoning.

Problem 3

Design your own roller coaster ride. Use a polynomial of degree 4 or higher and fully explain how you modelled the relationship. Describe this ride to your friend.

As an extension, choose another scenario that could be modelled by a polynomial relationship of degree 3 or higher. Instead of using time as the independent variable, you may like to use a length or distance variable. Include all reasoning, working and diagrams.

You may like to present your findings as a report. Your report could include:

- a poster showing diagrams and calculations
- a PowerPoint presentation
- a technology demonstration
- other (check with your teacher).

